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Abstract

A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T ) violation, which is equivalent to
charge-conjugation-parity (CP ) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs
in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings
with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP -
violating EDM of 3He and the expected sensitivity of such a measurement to the underlying CP -violating interactions. Assuming
that the coupling constants are of comparable magnitude for π-, ρ-, and ω-exchanges, we �nd that the pion-exchange contribution
dominates. Finally, our results suggest that a measurement of the 3He EDM is complementary to the planned neutron and deuteron
experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P ,T -violating interaction.

1. Introduction

Apermanent electric dipole moment (EDM) of a physical
system would indicate direct violation of time-reversal (T )
and parity (P ) and thus CP violation through the CPT
invariance. Presently there are several experimental pro-
grams pushing the limits on EDMs in atoms, nuclei, and the
neutron to regimes of fundamental interest. The Standard
Model (SM) predicts values for the EDMs of these systems
that are too small to be detected in the foreseeable future,
and hence a measured nonzero EDM in any of these sys-
tems is an unambiguous signal for a new source of CP vio-
lation and for physics beyond the SM. A new experimental
scheme [1,2,3,4,5] for measuring EDMs of nuclei (stripped
of their atomic electrons) in a magnetic storage ring sug-
gests that the EDM of deuteron could bemeasured to an ac-
curacy of better that 10−27 e cm [4]. Unlike searches forCP -
violating moments of the nucleus through measurements of
atomic EDMs, a measurement for a stripped nucleus would
not su�er from a suppression of the signal through atomic
Schi� screening [6]. For this reason, the latter could repre-
sent about an order of magnitude better sensitivity to the
underlying CP -violating interaction than the present limit
on the neutron EDM, dn [2]. Measurements using stripped
nuclei in a magnetic storage ring are best suited to nuclei
with small magnetic anomaly, making 3He an ideal candi-
date for a high precision measurement. Here we examine

1 Present Address: Department of Physics, University of Wisconsin-
Madison, 1150 University Avenue, Madison, WI 53706-1390.

the nuclear structure issues determining the EDM of 3He
and calculate the matrix elements of the relevant operators
using the no-core shell model [7,8] and Podolsky's method
for implementing second-order perturbation theory [9,10].

2. Sources of Nuclear P -,T -violation

A nuclear EDM consists of contributions from the fol-
lowing sources: (i) the intrinsic EDMs of the proton and
neutron, dp and dn; (ii) the polarization e�ect caused by
the P -,T -violating (/P /T ) nuclear interaction, H/P /T ; (iii) the
/P /T meson-exchange charge operator appropriate for H/P /T .
The contribution due to nucleon EDMs, D(1), which is

purely one-body, can be easily evaluated by taking the ma-
trix element

D(1) = 〈ψ|
A∑

i=1

1
2

[(dp + dn) + (dp − dn) τz
i ] σz

i |ψ〉 , (1)

where |ψ〉 is the nuclear state that has the maximal mag-
netic quantum number. In the particular case of interest in
this paper, |ψ〉 = |0〉 is the ground state of 3He obtained
by the diagonalization of the P ,T -conserving interaction.

In perturbation theory, H/P /T induces a parity admixture
to the nuclear state

|̃0〉 =
∑

n 6=0

1
E0 − En

|n〉 〈n|H/P /T |0〉 , (2)

where |n〉 are eigenstates of energy En and opposite parity
from |0〉, calculated with the P -,T -conserving Hamiltonian.
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Hence, the polarization contribution D(pol) can be simply
calculated as

D(pol) = 〈0| D̂z |̃0〉+ c.c. , (3)
where

D̂z =
e

2

A∑

i=1

(1 + τz
i ) zi (4)

is the usual dipole operator projected in the z-direction.
The contribution due to exchange charge, D(ex), is typi-

cally at the order of (v/c)2, and explicitly evaluated to be
just a few percent of the polarization contribution for the
deuteron case [11]; therefore, we ignore it and approximate
the full two-body contribution, D(2), solely by the polar-
ization term

D(2) = D(pol) +D(ex) ∼= D(pol) . (5)
The interaction H/P /T is conventionally formulated in a

one-meson-exchange model. Including mesons with mass
lower than 1GeV, i.e., π, η, ρ, and ω, the full interaction is
given as (see Refs. [11,12,13,14,15,16]):
H/P /T (r)

=
1

2mN

{
σ− ·∇

(
Ḡ0

η yη(r)− Ḡ0
ω yω(r)

)

+ τ1 · τ2 σ− ·∇
(
Ḡ0

π yπ(r)− Ḡ0
ρ yρ(r)

)

+
τz
+

2
σ− ·∇

(
Ḡ1

π yπ(r)− Ḡ1
η yη(r)− Ḡ1

ρ yρ(r)− Ḡ1
ω yω(r)

)

+
τz
−
2

σ+ ·∇
(
Ḡ1

π yπ(r) + Ḡ1
η yη(r) + Ḡ1

ρ yρ(r)− Ḡ1
ω yω(r)

)

+ (3 τz
1 τ

z
2 − τ1 · τ2)σ− ·∇

(
Ḡ2

π yπ(r)− Ḡ2
ρ yρ(r)

)}
,

(6)

where ḠT
x is de�ned as the product of a /P /T meson�nucleon

coupling ḡT
x , with T referring to the isospin, and its asso-

ciated strong one, gxNN . For example, Ḡ0
π = gπNN ḡ

0
π and

yx(r) = e−mx r/(4π r) is the Yukawa function with a range
determined by the mass of the exchanged x-meson.

In this work we mainly concentrate on pion exchange,
which is long-ranged and therefore makes the dominant
contribution [17] for the weakly bound 3He nucleus. We
nevertheless also include ρ- and ω-exchanges in our calcu-
lation. While a H/P /T in e�ective-�eld-theory (EFT) frame-
work is still under development [18], the phenomenological
ρ- and ω-exchanges should give some idea about the short-
range part of H/P /T in EFT, which at the lowest order also
anticipates �ve low-energy constants in order to character-
ize all possible /P /T S�P transitions. 2

By means of reliable hadronic calculations one should be
able, in principle, to express the nucleon EDMs (and the
/P /T meson�nucleon couplings, as well) in terms of the un-
derlying /P /T parameters, including the QCD θ̄ term, etc., at

2 For more justi�cation, see the established development in applying
EFT to the parity-violating (but time-reversal-conserving) sector,
Refs. [19,20].

the quark-gluon level. On the other hand, using the baryon-
meson picture one can in fact estimate the nucleon EDMs
through loop diagrams (see, for example, Refs. [21,22,23])
by using the same chiral Lagrangian that leads to H/P /T via
meson exchange. For the later part of this paper we will rely
on this picture whenever a nucleon EDM is to be expressed
in terms of the /P /T meson�nucleon couplings.

3. 3He in the ab initio No-Core Shell Model

We solve the three-body problem in an ab initio no-core
shell model (NCSM) framework [7,8]. The ground-state
wave function is obtained by a direct diagonalization of
an e�ective Hamiltonian in a truncated harmonic oscilla-
tor (HO) basis constructed in relative coordinates, as de-
scribed in Ref. [24]. High-precision two-nucleon (NN) in-
teractions, such as the local Argonne v18 [25,26] and the
non-local charge-dependent (CD) Bonn potential [27] inter-
actions, are used to derive an e�ective interaction in each
model space via a unitary transformation [28,29,30] in a
two-body cluster approximation. The Coulomb interaction
between protons is also taken into account.

In addition to the phenomenological NN interaction
models cited above, we consider two- and three-body in-
teractions derived from EFT. In a recent work [31] using
the ab initio NCSM, the presently available NN potential
at N3LO [32] and the three-nucleon (NNN) interaction
at N2LO [33,34] have been applied to the calculation of
various properties of s- and p-shell nuclei. In that study
a preferred choice of the two NNN low energy constants,
cD and cE , was found (and the fundamental importance
of the chiral EFT NNN interaction was demonstrated) by
reproducing the structure of mid-p-shell nuclei. (Note that
these interactions are �tted only for a momentum cuto�
of 500 MeV, and therefore we are not able at this time to
demonstrate a running of the observables with the cuto�.)
This Hamiltonian was then used to calculate microscopi-
cally the photo-absorption cross section of 4He [35], while
the full technical details on the local chiral EFT NNN in-
teraction that was used were given in Ref. [36]. We use an
identical Hamiltonian in the present work, and we compare
its predictions against the phenomenological potentials.

In the NCSM the basis states are constructed using HO
wave functions. Hence, all the calculations involve two pa-
rameters: the HO frequency Ω andNmax, the number of os-
cillator quanta included in the calculation. At large enough
Nmax, the results become independent of the frequency, al-
though the rate of convergence depends on Ω. Thus, for
short-range operators, one can expect a faster convergence
for larger values of Ω, as the characteristic length of the HO
is b = 1/

√
mN Ω. The convergence also depends upon the

P -,T -conserving interaction, H0, used to solve the three-
body problem. Thus the results obtained with Argonne v18
show the slowest convergence, because the NN interaction
has a more strongly repulsive core than the interactions
obtained from EFT, which have faster convergence rates.
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The nucleonic contribution D(1) in Eq. (1) involves only
H0, and is easily calculated once the three-body problem
is solved. We therefore concentrate on the part involving
H/P /T .

Equation (2) suggests that in order to calculate the dipole
moment one needs to obtain high-accuracy excited states
of 3He in the continuum, an extremely di�cult task in a
NCSM framework, where the basis states are constructed
using bound-state wave functions. The most straightfor-
ward technique for evaluating Eq. (2) is to use Podolsky's
method [9,10], in which |̃0〉 is obtained as the solution of
the Schrödinger equation with an inhomogeneous term

(E0 −H0) |̃0〉 = H/P /T |0〉 . (7)
The exceptionally nice feature of this method is that con-
tinuum states do not have to be explicitly calculated (they
are, of course, implicitly included). In this sense the tech-
nique is a relatively simple extension of bound-state meth-
ods, which have been well studied and are robust.Moreover,
in this approach the convergence of the EDM reduces to a
large degree to the issue of the convergence of the ground
state.

We express the solution of Eq. (7) as a superposition of
a handful of vectors generated using the Lanczos algorithm
[37,38]. Indeed, one can show that if we start with the in-
homogeneous part of Eq. (7) as the starting Lanczos vector
|v1〉 = H/P /T |0〉, the solution becomes [39]

|̃0〉 ≈
∑

k

gk(E0) |vk〉 , (8)

where the summation over the index k runs over a �nite and
usually small number of iterations. The coe�cients gk(E)
are easily obtained using �nite continued fractions [40].

We alter this approach in practice for e�ciency reasons.
Because Eq. (3) is symmetrical in D̂z and H/P /T , we are free
to choose |v1〉 = D̂z |0〉 as the starting vector. This allows
us to isolate the two isospin contributions for H/P /T in each
run. Once we compute a second vector, |v〉 = H†

/P /T
|0〉, the

polarization contribution to the EDM is �nally evaluated
as

D(pol) = 2
∑

k

gk(E0) 〈v|vk〉 . (9)

(We have veri�ed that the altered approach gives the same
results as the original one.) As a particular test case we
have considered the electric polarizability

αE =
1

2π2

∫
dω

σ(ω)
ω2

= 2α
∑

n

〈0|D̂z|n〉〈n|D̂z|0〉
En − E0

(10)

(where α is the �ne structure constant), which reduces
Eq. (9) to αE = −2α g1(E0) 〈v1|v1〉. We estimate that the
electric polarizability of the 3He nucleus is 0.183 fm3 for the
Argonne v18 potential, compared with 0.159 fm3 reported
in Ref. [41] for the same interaction. The 15% discrepancy
is most likely the result of a di�erence in the theoretical
approaches, as the result reported in Ref. [41] involves a

matching of the ground-state energy to experiment (i.e.,
7.72 MeV), although the calculation gives 6.88 MeV bind-
ing [42] in the absence of three-body forces (our converged
binding energy for Argonne v18 is 6.92 MeV). Since the
electric polarizability scales roughly with the inverse of the
square of the binding energy, the discrepancy between the
two results is reasonable. Moreover, we have made the ad-
ditional check of the Levinger-Bethe sum rule [43], which in
the case of tritium relates the total dipole strength to the
charge radius, and we found it to be satis�ed in all model
spaces to a precision better than 10−5. Finally, the 3He po-
larizability calculated using the two- and three-body chiral
interactions is 0.148 fm3, compared with 0.145 fm3 with Ar-
gonne v18 and Urbana IX [41] two- and three-body forces.
In both cases excellent agreement with the experimental
binding energy is achieved.

In a consistent approach the same transformation used to
obtain the e�ective interaction should be used to construct
the e�ective operators in truncated spaces. While this has
been done in the past for general one- and two-body op-
erators [44,45], such an approach is very cumbersome for
the present investigation because both the dipole transi-
tion operator and H/P /T change the parity of the states. We
have therefore chosen not to renormalize the operators in-
volved, except for the P -,T -conserving Hamiltonian. This
problem is largely overcome by the fact that long-range op-
erators (like the dipole) have been found to be insensitive
to the renormalization in the two-body cluster approxima-
tion [44,45], which is the level of truncation for the e�ective
interaction. We have to point out that since H/P /T has short
range, one can expect that the renormalization of this op-
erator would improve the convergence pattern, especially
for small frequencies. As with all operators, the e�ect of the
renormalization decreases as the size of the model space in-
creases, so that in large model spaces (like the ones in the
present calculation) this e�ect can be safely neglected and
good convergence of observables achieved.

4. Results and Discussions

We start the discussion of our results with the one-body
contribution to the EDM of 3He. In Table 1, we summa-
rize the isoscalar and isovector contribution to D(1), de-
composed into their respective coupling constants (dp + dn

for isoscalar, and dp − dn for isovector).
Table 1
The nucleonic contribution (in e fm) to the 3He EDM for di�erent
potential models. We decompose our results into isoscalar (dp + dn)
and isovector (dp − dn) contributions.

CD Bonn v18 EFT
NN NN+NNN

dp + dn 0.430 0.415 0.437 0.433

dp − dn −0.467 −0.462 −0.468 −0.468

All interactions give similar results, with only the Ar-
gonne v18 result deviating more signi�cantly from the oth-
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ers, albeit by less than 6%. Table 1 also allows us an indi-
rect check of our calculation. Since 3He is mostly an S1/2

state, its magnetic moment can be approximated similarly
to Eq. (1), with the proton and neutron dipole moments
dp and dn replaced by gp and gn, respectively, with gp =
2.79 and gn = −1.91 being the proton and neutron gyro-
magnetic ratios. We estimate that the magnetic moment is
0.90 gn − 0.04 gp = −1.83 for chiral two- and three-body
interactions, which compares reasonably well with the ex-
perimental value of−2.12762485(7); the 15% di�erence can
be explained by the relatively small admixture of S′ and
D states and the missing meson-exchange currents. Fur-
thermore, the results agree quite well with a simple single-
particle model, in which 3He is described by a valence neu-
tron hole. In such a simpli�ed description, the magnetic and
one-body EDM are gn and dn, respectively, in close agree-
ment with 0.90 gn− 0.04 gp and 0.90 dn− 0.04 dp, obtained
from Table 1.

In Fig. 1 we present for four HO frequencies the running
with Nmax of the EDM induced by the pion-exchange part
of H/P /T . Two- and three-body EFT interactions have been
used for this calculation, in order to obtain an accurate
description of the ground-state of the three-body system.
For the nuclear EDM we mix two types of operators: H/P /T ,
which is short range, and D̂z, which is long range. The
convergence pattern is therefore not as straightforward as
discussed for the electric polarizability. However, the short-
range part dominates the convergence pattern, and we thus
observe faster convergence for larger frequencies (smaller
HO parameter length). This behavior is opposite to the con-
vergence in the case of the electric polarizability discussed
above. While we do not show the convergence of αE , we
found faster convergence for smaller frequencies. Neverthe-
less, just as in Fig. 1, the results become independent of
the frequency at large Nmax. Note in the insert the conver-
gence behavior of the ground-state energy, which converges
to the experimental value already at Nmax ≈ 22 for most
frequencies presented in the �gure.

Similar convergence patterns can be observed for the
other meson exchanges as well as other potential models.
In Table 2 we summarize these results.

For pion exchange, all potential models give basically
the same result, as the long-range part (r & 1/mπ) of the
3He wave function shows negligible model dependence. It
is interesting to note the e�ect of the three-body force by
comparing the results with and without NNN interactions.
When only the NN EFT interaction is used, the binding en-
ergy is underestimated by about 500 keV. Therefore, since
the ground-state energy is in the denominator of Eq. (2),
one could naively expect that introducing the three-body
forces (which increase the binding) decreases D(pol). In-
stead we obtain nearly the same results for both isoscalar
and isovector contributions. This implies that the NNN
interaction reshu�es the strength to compensate for the
change in binding energy, most likely at low energies. This
is not a surprise, because it was already found previously
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Figure 1. Isoscalar, isovector, and isotensor pion-exchange contribu-
tions to the H/P /T -induced EDM in 3He. We show four di�erent fre-
quencies in each case: Ω = 10 MeV (circles), Ω = 20 MeV (squares),
Ω = 30 MeV (diamonds), and Ω = 40 MeV (triangles). In the insert,
we present the convergence of the ground-state energy, which in the
limit of large Nmax approaches the experimental value (dashed line).
Both NN and NNN EFT interactions have been used for diagonal-
ization.

that the main e�ect of the three-body forces for the dipole
response is an attenuation of the peak region at low ener-
gies both in the three- [41] and four-body [35] systems.

For ρ- and ω-exchanges one immediately sees that their
corresponding coe�cients are at most 10% of the pion-
exchange ones, because only the short-range wave func-
tion (r . 1/mρ,ω) contribute substantially. Also because
of their short-range sensitivity, the model dependence be-
comes more pronounced, which can be as large as 50% for
some channels. While a detailed explanation for the model
dependence is too intricate to be disentangled, one can
roughly see the general trend that the calculation using Ar-
gonne v18 gives consistently smaller results than ones using
CD Bonn and chiral EFT, as Argonne v18 has a harder core
than the other two. The best way to discuss the short-range
interaction is using the language of EFT, and at the low-
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Table 2
The polarization contribution to 3He EDM (in units of e fm), decomposed in ḠT

x , where x stands for π, ρ, or ω meson exchanges.

π ρ ω

CD Bonn v18 EFT CD Bonn v18 EFT CD Bonn v18 EFT
NN NN+NNN NN NN+NNN NN NN+NNN

Ḡ0
x −0.013 −0.012 −0.015 −0.015 0.0012 0.0006 0.0012 0.0013 −0.0008 −0.0005 −0.0009 −0.0007

Ḡ1
x −0.022 −0.022 −0.023 −0.023 −0.0011 −0.0009 −0.0013 −0.0012 0.0011 0.0011 0.0017 0.0018

Ḡ2
x −0.035 −0.034 −0.037 −0.036 0.0019 0.0015 0.0028 0.0027 - - - -

est order one expects �ve low-energy constants to be deter-
mined phenomenologically. In fact, one can simulate this
framework by treating Ḡ0,1,2

ρ and Ḡ0,1
ω as free parameters in

the one-meson-exchange picture. As it is very unlikely that
we will have enough precise EDM measurements to deter-
mine these parameters in the near future, we assume natu-
ralness, which requires that all Ḡπ,ρ,ω have similar magni-
tude. By this assumption, the pion-exchange has the domi-
nant contributions to nuclear EDMs, with the heavy-meson
exchanges (the short-range interaction) giving roughly a
10% correction to the pion-exchange contribution.

Assuming the dominance of pion exchange, D(2) has an
almost model-independent expression

D(2) ≈ (−0.015 Ḡ0
π − 0.023 Ḡ1

π − 0.036 Ḡ2
π) e fm. (11)

The single-nucleon EDMs can be estimated using the non-
analytic term that results from calculating the one-pion
loop diagram, which dominates in the chiral limit (see, for
example, [11,21,22,23])

dp,n ≈ ∓ e

4π2mN

(Ḡ0
π − Ḡ2

π) ln
(
mN

mπ

)
. (12)

Folding this result intoD(1) and using the physical nucleon
and pion masses, ln(mN/mπ) ≈ 1.90, we get

D(1) ≈ 0.009 (Ḡ0
π − Ḡ2

π) e fm . (13)
Therefore, the total EDM of 3He is estimated to be

D = D(1) +D(2)

= (−0.006 Ḡ0
π − 0.023 Ḡ1

π − 0.045Ḡ2
π) e fm . (14)

Expressing the EDMs of the neutron and deuteron also
by Eq. (12) and pion-exchange dominance, one can see from
Table 3 that an EDM measurement in 3He is very comple-
mentary to the former two. Supposing that similar sensitiv-
ities can be reached in these three measurements, the /P /T
pion�nucleon coupling constants could be well-constrained
if the assumption of pion-exchange dominance is not too
far o�.

5. Summary

In this paper, we have calculated the nuclear EDM of
3He, which arises from the intrinsic electric EDMs of nu-
cleons and the P -,T -violating nucleon-nucleon interaction.

Table 3
The EDMs (in units of e fm) of neutron, deuteron, and 3He decom-
posed into contributions proportional to Ḡ0,1,2

π , while assuming the
dominance of pion-exchange forces in H/P /T and estimating nucleon
EDMs via pion loops.

Ḡ0
π Ḡ1

π Ḡ2
π

neutron 0.010 0.000 −0.010

deuteron 0.000 0.015 0.000

3He −0.006 −0.023 −0.045

Several potential models for the P -,T -conserving nuclear
interaction (including the latest-generation NN and NNN
chiral EFT forces) have been used in order to obtain the
solution to the nuclear three-body problem. The results
obtained with these potential models agree within 2% in
the /P /T pion-exchange sector. Though larger spreads in
/P /T ρ- and ω-exchanges are found (as the results sensi-
tively depend on the wave functions at short range), we ex-
pect them to be non-essential as pion-exchange dominates
the observable � unless the /P /T parameters associated with
heavy-meson exchanges are unnaturally much larger than
the ones with pion exchange. We further demonstrate that
a measurement of 3He EDM would be complementary to
those of the neutron and deuteron, and in combination they
can be used to put stringent constraints on the three P -
,T -violating pion�nucleon coupling constants. We therefore
strongly encourage experimentalists to consider such a 3He
measurement in a storage ring, in addition to the existing
deuteron proposal [4].
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